Generates plots for TaskSurv, depending on argument type
:
"target"
: CallsGGally::ggsurv()
on asurvival::survfit()
object. This computes the Kaplan-Meier survival curve for the observations if this task."duo"
: Passes data and additional arguments down toGGally::ggduo()
.columnsX
is target,columnsY
is features."pairs"
: Passes data and additional arguments down toGGally::ggpairs()
. Color is set to target column.
Usage
# S3 method for TaskSurv
autoplot(
object,
type = "target",
theme = theme_minimal(),
reverse = FALSE,
...
)
Arguments
- object
(TaskSurv).
- type
(
character(1)
):
Type of the plot. See above for available choices.- theme
(
ggplot2::theme()
)
Theggplot2::theme_minimal()
is applied by default to all plots.- reverse
(
logical()
)
IfTRUE
andtype = 'target'
, it plots the Kaplan-Meier curve of the censoring distribution. Default isFALSE
.- ...
(
any
): Additional arguments.rhs
is passed down to$formula
of TaskSurv for stratification for type"target"
. Other arguments are passed to the respective underlying plot functions.
Value
ggplot2::ggplot()
object.
Examples
library(mlr3)
library(mlr3viz)
library(mlr3proba)
library(ggplot2)
task = tsk("lung")
head(fortify(task))
#> time status age inst meal.cal pat.karno ph.ecog ph.karno sex wt.loss
#> <int> <lgcl> <int> <int> <int> <int> <int> <int> <fctr> <int>
#> 1: 306 TRUE 74 3 1175 100 1 90 m NA
#> 2: 455 TRUE 68 3 1225 90 0 90 m 15
#> 3: 1010 FALSE 56 3 NA 90 0 90 m 15
#> 4: 210 TRUE 57 5 1150 60 1 90 m 11
#> 5: 883 TRUE 60 1 NA 90 0 100 m 0
#> 6: 1022 FALSE 74 12 513 80 1 50 m 0
autoplot(task) # KM
autoplot(task) # KM of the censoring distribution
autoplot(task, rhs = "sex")
autoplot(task, type = "duo")
#> Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).
#> Warning: Removed 47 rows containing non-finite outside the scale range
#> (`stat_smooth()`).
#> Warning: Removed 47 rows containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 47 rows containing non-finite outside the scale range
#> (`stat_boxplot()`).
#> Warning: Removed 3 rows containing non-finite outside the scale range (`stat_smooth()`).
#> Warning: Removed 3 rows containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 3 rows containing non-finite outside the scale range
#> (`stat_boxplot()`).
#> Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).
#> Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#> Warning: Removed 14 rows containing non-finite outside the scale range
#> (`stat_smooth()`).
#> Warning: Removed 14 rows containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 14 rows containing non-finite outside the scale range
#> (`stat_boxplot()`).