This object stores the predictions returned by a learner of class LearnerSurv.

The `task_type`

is set to `"surv"`

.

## See also

Other Prediction:
`PredictionDens`

## Super class

`mlr3::Prediction`

-> `PredictionSurv`

## Active bindings

`truth`

(

`Surv`

)

True (observed) outcome.`crank`

(

`numeric()`

)

Access the stored predicted continuous ranking.`distr`

(distr6::Matdist|distr6::VectorDistribution)

Convert the stored survival matrix to a survival distribution.`lp`

(

`numeric()`

)

Access the stored predicted linear predictor.`response`

(

`numeric()`

)

Access the stored predicted survival time.

## Methods

## Inherited methods

### Method `new()`

Creates a new instance of this R6 class.

#### Usage

```
PredictionSurv$new(
task = NULL,
row_ids = task$row_ids,
truth = task$truth(),
crank = NULL,
distr = NULL,
lp = NULL,
response = NULL,
check = TRUE
)
```

#### Arguments

`task`

(TaskSurv)

Task, used to extract defaults for`row_ids`

and`truth`

.`row_ids`

(

`integer()`

)

Row ids of the predicted observations, i.e. the row ids of the test set.`truth`

(

`survival::Surv()`

)

True (observed) response.`crank`

(

`numeric()`

)

Numeric vector of predicted continuous rankings (or relative risks). One element for each observation in the test set. For a pair of continuous ranks, a higher rank indicates that the observation is more likely to experience the event.`distr`

(

`matrix()|[distr6::Matdist]|[distr6::VectorDistribution]`

)

Either a matrix of predicted survival probabilities or a distr6::VectorDistribution or a distr6::Matdist. If a matrix then column names must be given and correspond to survival times. Rows of matrix correspond to individual predictions. It is advised that the first column should be time`0`

with all entries`1`

and the last with all entries`0`

. If a`VectorDistribution`

then each distribution in the vector should correspond to a predicted survival distribution.`lp`

(

`numeric()`

)

Numeric vector of linear predictor scores. One element for each observation in the test set. \(lp = X\beta\) where \(X\) is a matrix of covariates and \(\beta\) is a vector of estimated coefficients.`response`

(

`numeric()`

)

Numeric vector of predicted survival times. One element for each observation in the test set.`check`

(

`logical(1)`

)

If`TRUE`

, performs argument checks and predict type conversions.

## Examples

```
library(mlr3)
task = tsk("rats")
learner = lrn("surv.kaplan")
p = learner$train(task, row_ids = 1:20)$predict(task, row_ids = 21:30)
head(as.data.table(p))
#> row_ids time status crank distr
#> 1: 21 79 FALSE 0.4616396 <list[1]>
#> 2: 22 91 FALSE 0.4616396 <list[1]>
#> 3: 23 98 FALSE 0.4616396 <list[1]>
#> 4: 24 76 FALSE 0.4616396 <list[1]>
#> 5: 25 89 FALSE 0.4616396 <list[1]>
#> 6: 26 104 FALSE 0.4616396 <list[1]>
```