Calls graphics::hist()
and the result is coerced to a distr6::Distribution.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
Super classes
mlr3::Learner
-> mlr3proba::LearnerDens
-> LearnerDensHistogram
Examples
# Define the Learner
learner = lrn("dens.hist")
print(learner)
#>
#> ── <LearnerDensHistogram> (dens.hist): Histogram Density Estimator ─────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3proba, and distr6
#> • Predict Types: [pdf], cdf, and distr
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties:
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("faithful")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> $distr
#> Histogram()
#>
#> $hist
#> $breaks
#> [1] 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
#>
#> $counts
#> [1] 37 31 1 7 18 53 32 3
#>
#> $density
#> [1] 0.40659341 0.34065934 0.01098901 0.07692308 0.19780220 0.58241758 0.35164835
#> [8] 0.03296703
#>
#> $mids
#> [1] 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25
#>
#> $xname
#> [1] "dat"
#>
#> $equidist
#> [1] TRUE
#>
#> attr(,"class")
#> [1] "histogram"
#>
#> attr(,"class")
#> [1] "dens.hist"
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> dens.logloss
#> 1.170993