Calls rpart::rpart()
.
crank is predicted using
rpart::predict.rpart()
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
Parameters
Id | Type | Default | Levels | Range |
parms | numeric | 1 | \((-\infty, \infty)\) | |
minbucket | integer | - | \([1, \infty)\) | |
minsplit | integer | 20 | \([1, \infty)\) | |
cp | numeric | 0.01 | \([0, 1]\) | |
maxcompete | integer | 4 | \([0, \infty)\) | |
maxsurrogate | integer | 5 | \([0, \infty)\) | |
maxdepth | integer | 30 | \([1, 30]\) | |
usesurrogate | integer | 2 | \([0, 2]\) | |
surrogatestyle | integer | 0 | \([0, 1]\) | |
xval | integer | 10 | \([0, \infty)\) | |
cost | untyped | - | - | |
keep_model | logical | FALSE | TRUE, FALSE | - |
Initial parameter values
xval
is set to 0 in order to save some computation time.model
has been renamed tokeep_model
.
References
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. doi:10.1201/9781315139470 .
See also
Other survival learners:
mlr_learners_surv.coxph
,
mlr_learners_surv.kaplan
Super classes
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvRpart
Methods
Method importance()
The importance scores are extracted from the model slot variable.importance
.
Returns
Named numeric()
.