Skip to contents

Calls rpart::rpart().

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

LearnerSurvRpart$new()
mlr_learners$get("surv.rpart")
lrn("surv.rpart")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3proba, rpart, distr6, survival

Parameters

IdTypeDefaultLevelsRange
parmsnumeric1\((-\infty, \infty)\)
minbucketinteger-\([1, \infty)\)
minsplitinteger20\([1, \infty)\)
cpnumeric0.01\([0, 1]\)
maxcompeteinteger4\([0, \infty)\)
maxsurrogateinteger5\([0, \infty)\)
maxdepthinteger30\([1, 30]\)
usesurrogateinteger2\([0, 2]\)
surrogatestyleinteger0\([0, 1]\)
xvalinteger10\([0, \infty)\)
costuntyped--
keep_modellogicalFALSETRUE, FALSE-

Initial parameter values

  • xval is set to 0 in order to save some computation time.

  • model has been renamed to keep_model.

References

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. doi:10.1201/9781315139470 .

See also

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvRpart

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are extracted from the model slot variable.importance.

Usage

LearnerSurvRpart$importance()

Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot frame$var.

Usage

LearnerSurvRpart$selected_features()

Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerSurvRpart$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.