Input and Output Channels
Input and output channels are inherited from PipeOpTaskTransformer.
State
The $state is a named list with the $state elements inherited from PipeOpTaskTransformer.
Parameters
The parameters are
status :: (numeric(1))
IfNULLthen assumed no censoring in the dataset. Otherwise should be a vector of0/1s of same length as the prediction object, where1is dead and0censored.
See also
Other PipeOps:
PipeOpPredTransformer,
PipeOpTaskTransformer,
PipeOpTransformer,
mlr_pipeops_survavg,
mlr_pipeops_trafopred_classifsurv_IPCW,
mlr_pipeops_trafopred_classifsurv_disctime,
mlr_pipeops_trafopred_regrsurv,
mlr_pipeops_trafopred_survregr,
mlr_pipeops_trafotask_survclassif_IPCW,
mlr_pipeops_trafotask_survclassif_disctime,
mlr_pipeops_trafotask_survregr
Other Transformation PipeOps:
mlr_pipeops_trafopred_classifsurv_IPCW,
mlr_pipeops_trafopred_classifsurv_disctime,
mlr_pipeops_trafopred_regrsurv,
mlr_pipeops_trafopred_survregr,
mlr_pipeops_trafotask_survclassif_IPCW,
mlr_pipeops_trafotask_survclassif_disctime,
mlr_pipeops_trafotask_survregr
Super classes
mlr3pipelines::PipeOp -> mlr3proba::PipeOpTransformer -> mlr3proba::PipeOpTaskTransformer -> PipeOpTaskRegrSurv
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTaskRegrSurv$new(id = "trafotask_regrsurv")Examples
if (FALSE) { # \dontrun{
library(mlr3)
library(mlr3pipelines)
task = tsk("boston_housing")
po = po("trafotask_regrsurv")
# assume no censoring
new_task = po$train(list(task_regr = task, task_surv = NULL))[[1]]
print(new_task)
# add censoring
task_surv = tsk("rats")
task_regr = po("trafotask_survregr", method = "omit")$train(list(task_surv, NULL))[[1]]
print(task_regr)
new_task = po$train(list(task_regr = task_regr, task_surv = task_surv))[[1]]
new_task$truth()
task_surv$truth()
} # }