Input and Output Channels
Input and output channels are inherited from PipeOpTaskTransformer.
State
The $state
is a named list
with the $state
elements inherited from PipeOpTaskTransformer.
Parameters
The parameters are
status :: (numeric(1))
IfNULL
then assumed no censoring in the dataset. Otherwise should be a vector of0/1
s of same length as the prediction object, where1
is dead and0
censored.
See also
Other PipeOps:
PipeOpPredTransformer
,
PipeOpTaskTransformer
,
PipeOpTransformer
,
mlr_pipeops_survavg
,
mlr_pipeops_trafopred_classifsurv_IPCW
,
mlr_pipeops_trafopred_classifsurv_disctime
,
mlr_pipeops_trafopred_regrsurv
,
mlr_pipeops_trafopred_survregr
,
mlr_pipeops_trafotask_survclassif_IPCW
,
mlr_pipeops_trafotask_survclassif_disctime
,
mlr_pipeops_trafotask_survregr
Other Transformation PipeOps:
mlr_pipeops_trafopred_classifsurv_IPCW
,
mlr_pipeops_trafopred_classifsurv_disctime
,
mlr_pipeops_trafopred_regrsurv
,
mlr_pipeops_trafopred_survregr
,
mlr_pipeops_trafotask_survclassif_IPCW
,
mlr_pipeops_trafotask_survclassif_disctime
,
mlr_pipeops_trafotask_survregr
Super classes
mlr3pipelines::PipeOp
-> mlr3proba::PipeOpTransformer
-> mlr3proba::PipeOpTaskTransformer
-> PipeOpTaskRegrSurv
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTaskRegrSurv$new(id = "trafotask_regrsurv")
Examples
if (FALSE) { # \dontrun{
library(mlr3)
library(mlr3pipelines)
task = tsk("boston_housing")
po = po("trafotask_regrsurv")
# assume no censoring
new_task = po$train(list(task_regr = task, task_surv = NULL))[[1]]
print(new_task)
# add censoring
task_surv = tsk("rats")
task_regr = po("trafotask_survregr", method = "omit")$train(list(task_surv, NULL))[[1]]
print(task_regr)
new_task = po$train(list(task_regr = task_regr, task_surv = task_surv))[[1]]
new_task$truth()
task_surv$truth()
} # }