Skip to contents

A mlr3::TaskGenerator calling simsurv::simsurv() from package simsurv.

This generator currently only exposes a small subset of the flexibility of simsurv, and just creates a small dataset with the following numerical covariates:

  • treatment: Bernoulli distributed with hazard ratio 0.5.

  • height: Normally distributed with hazard ratio 1.

  • weight: normally distributed with hazard ratio 1.

See simsurv::simsurv() for an explanation of the hyperparameters. Initial values for hyperparameters are lambdas = 0.1, gammas = 1.5 and maxt = 5. The last one, by default generates samples which are administratively censored at \(\tau = 5\), so increase this value if you want to change this.

Dictionary

This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen():

mlr_task_generators$get("simsurv")
tgen("simsurv")

Parameters

IdTypeDefaultLevelsRange
distcharacterweibullweibull, exponential, gompertz-
lambdasnumeric-\([0, \infty)\)
gammasnumeric-\([0, \infty)\)
maxtnumeric-\([0, \infty)\)

See also

Other TaskGenerator: mlr_task_generators_coxed, mlr_task_generators_simdens

Super class

mlr3::TaskGenerator -> TaskGeneratorSimsurv

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method help()

Opens the corresponding help page referenced by field $man.

Usage

TaskGeneratorSimsurv$help()


Method clone()

The objects of this class are cloneable with this method.

Usage

TaskGeneratorSimsurv$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("simsurv", quietly = TRUE)) {
  # generate 20 samples with Weibull survival distribution
  gen = tgen("simsurv")
  task = gen$generate(20)
  head(task)

  # generate 100 samples with exponential survival distribution and tau = 40
  gen = tgen("simsurv", dist = "exponential", gammas = NULL, maxt = 40)
  task = gen$generate(100)
  head(task)
}
#>    eventtime status   height treatment   weight
#>        <num>  <int>    <num>     <int>    <num>
#> 1: 22.005239      1 179.0330         1 84.89331
#> 2: 18.163877      1 188.1818         1 85.36058
#> 3:  5.660542      1 162.3345         0 94.56819
#> 4:  3.168900      1 167.4808         0 82.36814
#> 5: 18.902288      1 161.4914         1 80.53364
#> 6: 11.206606      1 156.0540         0 72.07708