Skip to contents

A mlr3::TaskGenerator calling simsurv::simsurv() from package simsurv.

This generator currently only exposes a small subset of the flexibility of simsurv, and just creates a small dataset with the following numerical covariates:

  • treatment: Bernoulli distributed with hazard ratio 0.5.

  • height: Normally distributed with hazard ratio 1.

  • weight: normally distributed with hazard ratio 1.

See simsurv::simsurv() for an explanation of the hyperparameters. Initial values for hyperparameters are lambdas = 0.1, gammas = 1.5 and maxt = 5. The last one, by default generates samples which are administratively censored at \(\tau = 5\), so increase this value if you want to change this.

Dictionary

This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen():

mlr_task_generators$get("simsurv")
tgen("simsurv")

Parameters

IdTypeDefaultLevelsRange
distcharacterweibullweibull, exponential, gompertz-
lambdasnumeric-\([0, \infty)\)
gammasnumeric-\([0, \infty)\)
maxtnumeric-\([0, \infty)\)

References

Brilleman, L. S, Wolfe, Rory, Moreno-Betancur, Margarita, Crowther, J. M (2021). “Simulating Survival Data Using the simsurv R Package.” Journal of Statistical Software, 97(3), 1–27. doi:10.18637/JSS.V097.I03 .

See also

Other TaskGenerator: mlr_task_generators_coxed, mlr_task_generators_simdens

Super class

mlr3::TaskGenerator -> TaskGeneratorSimsurv

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method help()

Opens the corresponding help page referenced by field $man.

Usage

TaskGeneratorSimsurv$help()


Method clone()

The objects of this class are cloneable with this method.

Usage

TaskGeneratorSimsurv$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

  # generate 20 samples with Weibull survival distribution
  gen = tgen("simsurv")
  task = gen$generate(20)
  head(task)
#>    eventtime status   height treatment   weight
#>        <num>  <int>    <num>     <int>    <num>
#> 1: 5.0000000      0 172.1168         1 75.25959
#> 2: 4.3382880      1 166.1004         0 63.62824
#> 3: 5.0000000      0 183.6185         1 69.24727
#> 4: 5.0000000      0 159.2613         1 55.11225
#> 5: 4.9182157      1 166.8404         1 71.29397
#> 6: 0.7727374      1 171.6880         0 70.25863

  # generate 100 samples with exponential survival distribution and tau = 40
  gen = tgen("simsurv", dist = "exponential", gammas = NULL, maxt = 40)
  task = gen$generate(100)
  head(task)
#>     eventtime status   height treatment    weight
#>         <num>  <int>    <num>     <int>     <num>
#> 1:  4.2007089      1 169.6693         1 105.96437
#> 2:  9.1542798      1 171.7075         0  79.97792
#> 3:  8.2892220      1 157.0461         1  82.24655
#> 4:  0.8816916      1 158.6124         0  62.84515
#> 5:  3.8204925      1 164.6303         0  80.63864
#> 6: 10.0142678      1 169.8157         0  90.74922