Calculates the Integrated Survival Brier Score (ISBS), Integrated Graf Score or squared survival loss.
Details
For an individual who dies at time \(t\), with predicted Survival function, \(S\), the Graf Score at time \(t^*\) is given by $$L_{ISBS}(S,t|t^*) = [(S(t^*)^2)I(t \le t^*, \delta = 1)(1/G(t))] + [((1 - S(t^*))^2)I(t > t^*)(1/G(t^*))]$$ where \(G\) is the Kaplan-Meier estimate of the censoring distribution.
The re-weighted ISBS (RISBS) is given by
$$L_{RISBS}(S,t|t^*) = [(S(t^*)^2)I(t \le t^*, \delta = 1)(1/G(t))] + [((1 - S(t^*))^2)I(t > t^*)(1/G(t))]$$
where \(G\) is the Kaplan-Meier estimate of the censoring distribution, i.e. always
weighted by \(G(t)\).
RISBS is strictly proper when the censoring distribution is independent
of the survival distribution and when G is fit on a sufficiently large dataset.
ISBS is never proper. Use proper = FALSE
for ISBS and proper = TRUE
for RISBS.
Results may be very different if many observations are
censored at the last observed time due to division by 1/eps
in proper = TRUE
.
Note: If comparing the integrated graf score to other packages, e.g.
pec, then method = 2
should be used. However the results may
still be very slightly different as this package uses survfit
to estimate
the censoring distribution, in line with the Graf 1999 paper; whereas some
other packages use prodlim
with reverse = TRUE
(meaning Kaplan-Meier is
not used).
If task
and train_set
are passed to $score
then G is fit on training data,
otherwise testing data. The first is likely to reduce any bias caused by calculating
parts of the measure on the test data it is evaluating. The training data is automatically
used in scoring resamplings.
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
Parameters
Id | Type | Default | Levels | Range |
integrated | logical | TRUE | TRUE, FALSE | - |
times | untyped | - | - | |
t_max | numeric | - | \([0, \infty)\) | |
p_max | numeric | - | \([0, 1]\) | |
method | integer | 2 | \([1, 2]\) | |
se | logical | FALSE | TRUE, FALSE | - |
proper | logical | FALSE | TRUE, FALSE | - |
eps | numeric | 0.001 | \([0, 1]\) | |
ERV | logical | FALSE | TRUE, FALSE | - |
Parameter details
integrated
(logical(1)
)
IfTRUE
(default), returns the integrated score (eg across time points); otherwise, not integrated (eg at a single time point).
times
(numeric()
)
Ifintegrate == TRUE
then a vector of time-points over which to integrate the score. Ifintegrate == FALSE
then a single time point at which to return the score.
t_max
(numeric(1)
)
Cutoff time (i.e. time horizon) to evaluate the measure up to. Mutually exclusive withp_max
ortimes
.
p_max
(numeric(1)
)
The proportion of censoring to integrate up to in the given dataset. Mutually exclusive withtimes
ort_max
.
method
(integer(1)
)
Ifintegrate == TRUE
, this selects the integration weighting method.method == 1
corresponds to weighting each time-point equally and taking the mean score over discrete time-points.method == 2
corresponds to calculating a mean weighted by the difference between time-points.method == 2
is the default value, to be in line with other packages.
se
(logical(1)
)
IfTRUE
then returns standard error of the measure otherwise returns the mean across all individual scores, e.g. the mean of the per observation scores. Default isFALSE
(returns the mean).
proper
(logical(1)
)
IfTRUE
then weights scores by the censoring distribution at the observed event time, which results in a strictly proper scoring rule if censoring and survival time distributions are independent and a sufficiently large dataset is used. IfFALSE
then weights scores by the Graf method which is the more common usage but the loss is not proper.
eps
(numeric(1)
)
Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or division-by-zero calculations. Default value is 0.001.
ERV
(logical(1)
)
IfTRUE
then the Explained Residual Variation method is applied, which means the score is standardized against a Kaplan-Meier baseline. Default isFALSE
.
References
Graf E, Schmoor C, Sauerbrei W, Schumacher M (1999). “Assessment and comparison of prognostic classification schemes for survival data.” Statistics in Medicine, 18(17-18), 2529--2545. doi:10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5 .
See also
Other survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.calib_beta
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.mae
,
mlr_measures_surv.mse
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rcll
,
mlr_measures_surv.rmse
,
mlr_measures_surv.schmid
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other Probabilistic survival measures:
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.rcll
,
mlr_measures_surv.schmid
Other distr survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.rcll
,
mlr_measures_surv.schmid
Super classes
mlr3::Measure
-> mlr3proba::MeasureSurv
-> MeasureSurvGraf