This task specializes TaskUnsupervised for density estimation problems.
The data in backend
should be a numeric vector or a one column matrix-like object.
The task_type
is set to "density"
.
Predefined tasks are stored in the dictionary mlr_tasks.
Super classes
mlr3::Task
-> mlr3::TaskUnsupervised
-> TaskDens
Methods
Inherited methods
mlr3::Task$add_strata()
mlr3::Task$cbind()
mlr3::Task$data()
mlr3::Task$divide()
mlr3::Task$droplevels()
mlr3::Task$filter()
mlr3::Task$format()
mlr3::Task$formula()
mlr3::Task$head()
mlr3::Task$help()
mlr3::Task$levels()
mlr3::Task$missings()
mlr3::Task$print()
mlr3::Task$rbind()
mlr3::Task$rename()
mlr3::Task$select()
mlr3::Task$set_col_roles()
mlr3::Task$set_levels()
mlr3::Task$set_row_roles()
Method new()
Creates a new instance of this R6 class.
Usage
TaskDens$new(id, backend, label = NA_character_)
Arguments
id
(
character(1)
)
Identifier for the new instance.backend
(DataBackend)
Either a DataBackend, a matrix-like object, or a numeric vector. If weights are used then two columns expected, otherwise one column. The weight column must be clearly specified (via[Task]$col_roles
) or the learners will break.label
(
character(1)
)
Label for the new instance.