Van Houwelingen's Calibration Alpha Survival Measure
Source:R/MeasureSurvCalibrationAlpha.R
mlr_measures_surv.calib_alpha.RdThis calibration method is defined by estimating $$\hat{\alpha} = \frac{\sum_{i=1}^n \delta_i}{\sum_{i=1}^n H_i(T_i)}$$ where \(\delta\) is the observed censoring indicator from the test data \(n\) observations), \(H_i\) is the predicted cumulative hazard, and \(T_i\) is the observed survival time (event or censoring).
The standard error is given by $$\hat{\alpha_{se}} = e^{1/\sqrt{\sum \delta_i}}$$
The model is well calibrated if the estimated \(\hat{\alpha}\) coefficient (returned score) is equal to 1.
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
Parameters
| Id | Type | Default | Levels | Range |
| eps | numeric | 0.001 | \([0, 1]\) | |
| se | logical | FALSE | TRUE, FALSE | - |
| method | character | ratio | ratio, diff | - |
| truncate | numeric | Inf | \((-\infty, \infty)\) |
Meta Information
Type:
"surv"Range: \((-\infty, \infty)\)
Minimize:
FALSERequired prediction:
distr
Parameter details
eps(numeric(1))
Very small number to substitute near-zero values in order to prevent errors in e.g. log(0) and/or division-by-zero calculations. Default value is 0.001.
se(logical(1))
IfTRUEthen return standard error of the measure, otherwise the score itself (default).method(character(1))
Returns \(\hat{\alpha}\) if equal toratio(default) and \(|1-\hat{\alpha}|\) if equal todiff. Withdiff, the output score can be minimized and for example be used for tuning purposes. This parameter takes effect only ifseisFALSE.truncate(double(1))
This parameter controls the upper bound of the output score. We usetruncate = Infby default (so no truncation) and it's up to the user to set this up reasonably given the chosenmethod. Note that truncation may severely limit automated tuning with this measure usingmethod = diff.
References
Van Houwelingen, C. H (2000). “Validation, calibration, revision and combination of prognostic survival models.” Statistics in Medicine, 19(24), 3401–3415. doi:10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2 .
See also
Other survival measures:
mlr_measures_surv.calib_beta,
mlr_measures_surv.calib_index,
mlr_measures_surv.chambless_auc,
mlr_measures_surv.cindex,
mlr_measures_surv.dcalib,
mlr_measures_surv.graf,
mlr_measures_surv.hung_auc,
mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss,
mlr_measures_surv.mae,
mlr_measures_surv.mse,
mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2,
mlr_measures_surv.rcll,
mlr_measures_surv.rmse,
mlr_measures_surv.schmid,
mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr,
mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr,
mlr_measures_surv.uno_tpr,
mlr_measures_surv.xu_r2
Other calibration survival measures:
mlr_measures_surv.calib_beta,
mlr_measures_surv.calib_index,
mlr_measures_surv.dcalib
Other distr survival measures:
mlr_measures_surv.calib_index,
mlr_measures_surv.dcalib,
mlr_measures_surv.graf,
mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss,
mlr_measures_surv.rcll,
mlr_measures_surv.schmid
Super classes
mlr3::Measure -> mlr3proba::MeasureSurv -> MeasureSurvCalibrationAlpha
Methods
Method new()
Creates a new instance of this R6 class.
Usage
MeasureSurvCalibrationAlpha$new(method = "ratio")