Calculates the mean absolute error (MAE).
The MAE is defined by $$\frac{1}{n} \sum |t - \hat{t}|$$ where \(t\) is the true value and \(\hat{t}\) is the prediction.
Censored observations in the test set are ignored.
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
Parameter details
se
(logical(1)
)
IfTRUE
then returns standard error of the measure otherwise returns the mean across all individual scores, e.g. the mean of the per observation scores. Default isFALSE
(returns the mean).
See also
Other survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.calib_beta
,
mlr_measures_surv.calib_index
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.graf
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.mse
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rcll
,
mlr_measures_surv.rmse
,
mlr_measures_surv.schmid
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other response survival measures:
mlr_measures_surv.mse
,
mlr_measures_surv.rmse
Super classes
mlr3::Measure
-> mlr3proba::MeasureSurv
-> MeasureSurvMAE