Calls survAUC::AUC.sh()
.
Assumes Cox PH model specification.
Details
All measures implemented from survAUC should be used with
care, we are aware of problems in implementation that sometimes cause fatal
errors in R.
In future updates some of these measures may be re-written and implemented
directly in mlr3proba
.
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
Parameters
Id | Type | Default | Levels |
times | untyped | - | |
integrated | logical | TRUE | TRUE, FALSE |
type | character | incident | incident, cumulative |
Parameter details
times
(numeric()
)
Ifintegrated == TRUE
then a vector of time-points over which to integrate the score. Ifintegrated == FALSE
then a single time point at which to return the score.
integrated
(logical(1)
)
IfTRUE
(default), returns the integrated score (eg across time points); otherwise, not integrated (eg at a single time point).
type
(character(1)
)
A string defining the type of true positive rate (TPR):incident
refers to incident TPR,cumulative
refers to cumulative TPR.
References
Song, Xiao, Zhou, Xiao-Hua (2008). “A semiparametric approach for the covariate specific ROC curve with survival outcome.” Statistica Sinica, 18(3), 947–65. https://www.jstor.org/stable/24308524.
See also
Other survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.calib_beta
,
mlr_measures_surv.calib_index
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.graf
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.mae
,
mlr_measures_surv.mse
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rcll
,
mlr_measures_surv.rmse
,
mlr_measures_surv.schmid
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other AUC survival measures:
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
Other lp survival measures:
mlr_measures_surv.calib_beta
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Super classes
mlr3::Measure
-> mlr3proba::MeasureSurv
-> mlr3proba::MeasureSurvAUC
-> MeasureSurvSongAUC
Examples
library(mlr3)
# Define a survival Task
task = tsk("lung")
# Create train and test set
part = partition(task)
# Train Cox learner on the train set
cox = lrn("surv.coxph")
cox$train(task, row_ids = part$train)
# Make predictions for the test set
p = cox$predict(task, row_ids = part$test)
# Integrated AUC score
p$score(msr("surv.song_auc"), task = task,
train_set = part$train, learner = cox)
#> surv.song_auc
#> 0.6312019
# AUC at specific time point
p$score(msr("surv.song_auc", times = 600), task = task,
train_set = part$train, learner = cox)
#> surv.song_auc
#> 0.6284578
# Integrated AUC at specific time points
p$score(msr("surv.song_auc", times = c(100, 200, 300, 400, 500)),
task = task, train_set = part$train, learner = cox)
#> surv.song_auc
#> 0.6315511