Calculates the Integrated Schmid Score (ISS), aka integrated absolute loss.
Details
For an individual who dies at time \(t\), with predicted Survival function, \(S\), the Schmid Score at time \(t^*\) is given by $$L_{ISS}(S,t|t^*) = [(S(t^*))I(t \le t^*, \delta = 1)(1/G(t))] + [((1 - S(t^*)))I(t > t^*)(1/G(t^*))]$$ where \(G\) is the Kaplan-Meier estimate of the censoring distribution.
The re-weighted ISS, RISS is given by
$$L_{RISS}(S,t|t^*) = [(S(t^*))I(t \le t^*, \delta = 1)(1/G(t))] + [((1 - S(t^*)))I(t > t^*)(1/G(t))]$$
where \(G\) is the Kaplan-Meier estimate of the censoring distribution, i.e. always
weighted by \(G(t)\). RISS is strictly proper when the censoring distribution is independent
of the survival distribution and when G is fit on a sufficiently large dataset. ISS is never
proper. Use proper = FALSE
for ISS and proper = TRUE
for RISS.
Results may be very different if many observations are censored at the last
observed time due to division by 1/eps
in proper = TRUE
.
If task
and train_set
are passed to $score
then \(G(t)\) is fit on training data,
otherwise testing data. The first is likely to reduce any bias caused by calculating
parts of the measure on the test data it is evaluating. The training data is automatically
used in scoring resamplings.
If t_max
or p_max
is given, then \(G(t)\) will be fitted using all observations from the
train set (or test set) and only then the cutoff time will be applied.
This is to ensure that more data is used for fitting the censoring distribution via the
Kaplan-Meier.
Setting the t_max
can help alleviate inflation of the score when proper
is TRUE
,
in cases where an observation is censored at the last observed time point.
This results in \(G(t_{max}) = 0\) and the use of eps
instead (when t_max
is NULL
).
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
Parameters
Id | Type | Default | Levels | Range |
integrated | logical | TRUE | TRUE, FALSE | - |
times | untyped | - | - | |
t_max | numeric | - | \([0, \infty)\) | |
p_max | numeric | - | \([0, 1]\) | |
method | integer | 2 | \([1, 2]\) | |
se | logical | FALSE | TRUE, FALSE | - |
proper | logical | FALSE | TRUE, FALSE | - |
eps | numeric | 0.001 | \([0, 1]\) | |
ERV | logical | FALSE | TRUE, FALSE | - |
Parameter details
integrated
(logical(1)
)
IfTRUE
(default), returns the integrated score (eg across time points); otherwise, not integrated (eg at a single time point).
times
(numeric()
)
Ifintegrate == TRUE
then a vector of time-points over which to integrate the score. Ifintegrate == FALSE
then a single time point at which to return the score.
t_max
(numeric(1)
)
Cutoff time (i.e. time horizon) to evaluate the measure up to. Mutually exclusive withp_max
ortimes
. This will effectively remove test observations for which the time (event or censoring) is less thant_max
. It's recommended to sett_max
to avoid division byeps
, see Details.
p_max
(numeric(1)
)
The proportion of censoring to integrate up to in the given dataset. Mutually exclusive withtimes
ort_max
.
method
(integer(1)
)
Ifintegrate == TRUE
, this selects the integration weighting method.method == 1
corresponds to weighting each time-point equally and taking the mean score over discrete time-points.method == 2
corresponds to calculating a mean weighted by the difference between time-points.method == 2
is the default value, to be in line with other packages.
se
(logical(1)
)
IfTRUE
then returns standard error of the measure otherwise returns the mean across all individual scores, e.g. the mean of the per observation scores. Default isFALSE
(returns the mean).
proper
(logical(1)
)
IfTRUE
then weights scores by the censoring distribution at the observed event time, which results in a strictly proper scoring rule if censoring and survival time distributions are independent and a sufficiently large dataset is used. IfFALSE
then weights scores by the Graf method which is the more common usage but the loss is not proper.
eps
(numeric(1)
)
Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or division-by-zero calculations. Default value is 0.001.
ERV
(logical(1)
)
IfTRUE
then the Explained Residual Variation method is applied, which means the score is standardized against a Kaplan-Meier baseline. Default isFALSE
.
References
Schemper, Michael, Henderson, Robin (2000). “Predictive Accuracy and Explained Variation in Cox Regression.” Biometrics, 56, 249–255. doi:10.1002/sim.1486 .
Schmid, Matthias, Hielscher, Thomas, Augustin, Thomas, Gefeller, Olaf (2011). “A Robust Alternative to the Schemper-Henderson Estimator of Prediction Error.” Biometrics, 67(2), 524–535. doi:10.1111/j.1541-0420.2010.01459.x .
See also
Other survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.calib_beta
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.graf
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.mae
,
mlr_measures_surv.mse
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rcll
,
mlr_measures_surv.rmse
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other Probabilistic survival measures:
mlr_measures_surv.graf
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.rcll
Other distr survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.graf
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.rcll
Super classes
mlr3::Measure
-> mlr3proba::MeasureSurv
-> MeasureSurvSchmid