Calls ks::kde()
and the result is coerced to a distr6::Distribution.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
References
Gramacki, Artur, Gramacki, Jarosław (2017). “FFT-based fast computation of multivariate kernel density estimators with unconstrained bandwidth matrices.” Journal of Computational and Graphical Statistics, 26(2), 459–462.
Super classes
mlr3::Learner
-> mlr3proba::LearnerDens
-> LearnerDensKDEks
Examples
# Define the Learner
learner = lrn("dens.kde_ks")
print(learner)
#>
#> ── <LearnerDensKDEks> (dens.kde_ks): Kernel Density Estimator (ks package) ─────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3proba, ks, and distr6
#> • Predict Types: [pdf]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties:
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("faithful")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> ksKDE()
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> dens.logloss
#> 0.9899349