Skip to contents

Calls gss::ssden() and the result is coerced to a distr6::Distribution.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

LearnerDensSpline$new()
mlr_learners$get("dens.spline")
lrn("dens.spline")

Meta Information

  • Type: "dens"

  • Predict Types: pdf, cdf

  • Feature Types: integer, numeric

  • Properties: missings

  • Packages: mlr3 mlr3proba gss distr6

References

Gu, Chong, Wang, Jingyuan (2003). “Penalized likelihood density estimation: Direct cross-validation and scalable approximation.” Statistica Sinica, 811–826.

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensSpline

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerDensSpline$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("dens.spline")
print(learner)
#> 
#> ── <LearnerDensSpline> (dens.spline): Density Smoothing Splines ────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3proba, gss, and distr6
#> • Predict Types: [pdf] and cdf
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: missings
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("faithful")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> splineDens() 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> dens.logloss 
#>    0.9483884