Calls logspline::logspline()
and the result is coerced to a distr6::Distribution.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
References
Kooperberg, Charles, Stone, J C (1992). “Logspline density estimation for censored data.” Journal of Computational and Graphical Statistics, 1(4), 301–328.
Super classes
mlr3::Learner
-> mlr3proba::LearnerDens
-> LearnerDensLogspline
Examples
# Define the Learner
learner = lrn("dens.logspline")
print(learner)
#>
#> ── <LearnerDensLogspline> (dens.logspline): Logspline Density Estimation ───────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3proba, logspline, and distr6
#> • Predict Types: [pdf] and cdf
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties:
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("faithful")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> LogsplineDens()
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> dens.logloss
#> 1.028782