Skip to contents

Calls sm::sm.density() and the result is coerced to a distr6::Distribution.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

LearnerDensNonparametric$new()
mlr_learners$get("dens.nonpar")
lrn("dens.nonpar")

Meta Information

  • Type: "dens"

  • Predict Types: pdf

  • Feature Types: integer, numeric

  • Properties: weights

  • Packages: mlr3 mlr3proba sm distr6

References

Bowman, A.W., Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, series Oxford Statistical Science Series. OUP Oxford. ISBN 9780191545696, https://books.google.de/books?id=7WBMrZ9umRYC.

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensNonparametric

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerDensNonparametric$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner
learner = lrn("dens.nonpar")
print(learner)
#> 
#> ── <LearnerDensNonparametric> (dens.nonpar): Nonparametric Density Estimation ──
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3proba, sm, and distr6
#> • Predict Types: [pdf]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: weights
#> • Other settings: use_weights = 'use'

# Define a Task
task = tsk("faithful")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
#> NonparDens() 

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> dens.logloss 
#>      1.20037