Calls sm::sm.density()
and the result is coerced to a distr6::Distribution.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
References
Bowman, A.W., Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, series Oxford Statistical Science Series. OUP Oxford. ISBN 9780191545696, https://books.google.de/books?id=7WBMrZ9umRYC.
Super classes
mlr3::Learner
-> mlr3proba::LearnerDens
-> LearnerDensNonparametric
Examples
# Define the Learner
learner = lrn("dens.nonpar")
print(learner)
#>
#> ── <LearnerDensNonparametric> (dens.nonpar): Nonparametric Density Estimation ──
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3proba, sm, and distr6
#> • Predict Types: [pdf]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: weights
#> • Other settings: use_weights = 'use'
# Define a Task
task = tsk("faithful")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> NonparDens()
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> dens.logloss
#> 1.20037