Calls plugdensity::plugin.density()
and the result is coerced to a distr6::Distribution.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
Meta Information
Type: "dens"
Predict Types:
pdf
Feature Types:
numeric
Properties:
missings
Packages: mlr3 mlr3proba plugdensity distr6
References
Engel, Joachim, Herrmann, Eva, Gasser, Theo (1994). “An iterative bandwidth selector for kernel estimation of densities and their derivatives.” Journaltitle of Nonparametric Statistics, 4(1), 21–34.
Super classes
mlr3::Learner
-> mlr3proba::LearnerDens
-> LearnerDensPlugin
Examples
# Define the Learner
learner = lrn("dens.plug")
print(learner)
#>
#> ── <LearnerDensPlugin> (dens.plug): Kernel Density Estimation by Plug-In Bandwid
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3proba, plugdensity, and distr6
#> • Predict Types: [pdf]
#> • Feature Types: numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("faithful")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
#> PluginKDE()
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> dens.logloss
#> 1.021812